Black-box Optimization with a Politician

نویسندگان

  • Sébastien Bubeck
  • Yin Tat Lee
چکیده

We propose a new framework for black-box convex optimization which is well-suited for situations where gradient computations are expensive. We derive a new method for this framework which leverages several concepts from convex optimization, from standard first-order methods (e.g. gradient descent or quasi-Newton methods) to analytical centers (i.e. minimizers of self-concordant barriers). We demonstrate empirically that our new technique compares favorably with state of the art algorithms (such as BFGS).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of Fermentation Time for Iranian Black Tea Production

The optimum fermentation times of black tea manufactured by two systems of Orthodox and CTC (cut, tear & curl) were investigated by measuring the quality parameters of black tea, like: theaflavin, thearubigin, highly  polymerized substances and total liquid colour during the fermentation stage. Optimum fermentation times from the beginning of fermentation were determined to be 60 min and 15...

متن کامل

History-Based Test Case Prioritization for Black Box Testing on a New Product using Ant Colony Optimization

Test case prioritization is a technique to improve software testing. Although many works have investigated test case prioritization, they focus on white box testing or regression testing. However, software testing is often outsourced to a software testing company that employs black box testing. Herein a framework is proposed to prioritize test cases for black box testing on a new product using ...

متن کامل

A New Framework for the Valuation of Algorithms for Black-Box Optimization

Black-box optimization algorithms optimize a fitness function f without knowledge of the specific parameters of the problem instance. Their run time is measured as the number of f -evaluations. This implies that the usual algorithmic complexity of a problem cannot be applied in the black-box scenario. Therefore, a new framework for the valuation of algorithms for black-box optimization is prese...

متن کامل

An Integrated White+Black Box Approach for Designing and Tuning Stochastic Local Search

Stochastic Local Search (SLS) is a simple and effective paradigm for attacking a variety of Combinatorial (Optimization) Problems (COP). However, it is often non-trivial to get good results from an SLS; the designer of an SLS needs to undertake a laborious and ad-hoc algorithm tuning and re-design process for a particular COP. There are two general approaches. Black-box approach treats the SLS ...

متن کامل

On the Convergence of Adaptive Stochastic Search Methods for Constrained and Multi-objective Black-Box Optimization

Stochastic search methods for global optimization and multi-objective optimization are widely used in practice, especially on problems with black-box objective and constraint functions. Although there are many theoretical results on the convergence of stochastic search methods, relatively few deal with black-box constraints and multiple black-box objectives and previous convergence analyses req...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016